data science

Results 1 - 25 of 110Sort Results By: Published Date | Title | Company Name
By: IBM     Published Date: Sep 02, 2014
Life Sciences organizations need to be able to build IT infrastructures that are dynamic, scalable, easy to deploy and manage, with simplified provisioning, high performance, high utilization and able to exploit both data intensive and server intensive workloads, including Hadop MapReduce. Solutions must scale, both in terms of processing and storage, in order to better serve the institution long-term. There is a life cycle management of data, and making it useable for mainstream analyses and applications is an important aspect in system design. This presentation will describe IT requirements and how Technical Computing solutions from IBM and Platform Computing will address these challenges and deliver greater ROI and accelerated time to results for Life Sciences.
Tags : 
     IBM
By: Dell and Intel®     Published Date: Jun 18, 2015
The rapid evolution of big data technology in the past few years has changed forever the pursuit of scientific exploration and discovery. Along with traditional experiment and theory, computational modeling and simulation is a third paradigm for science. Its value lies in exploring areas of science in which physical experimentation is unfeasible and insights cannot be revealed analytically, such as in climate modeling, seismology and galaxy formation. More recently, big data has been called the “fourth paradigm" of science. Big data can be observed, in a real sense, by computers processing it and often by humans reviewing visualizations created from it. In the past, humans had to reduce the data, often using techniques of statistical sampling, to be able to make sense of it. Now, new big data processing techniques will help us make sense of it without traditional reduction
Tags : 
     Dell and Intel®
By: Revolution Analytics     Published Date: May 09, 2014
As the primary facilitator of data science and big data, machine learning has garnered much interest by a broad range of industries as a way to increase value of enterprise data assets. Through techniques of supervised and unsupervised statistical learning, organizations can make important predictions and discover previously unknown knowledge to provide actionable business intelligence. In this guide, we’ll examine the principles underlying machine learning based on the R statistical environment. We’ll explore machine learning with R from the open source R perspective as well as the more robust commercial perspective using Revolution Analytics Enterprise (RRE) for big data deployments.
Tags : revolution analytics, data science, big data, machine learning
     Revolution Analytics
By: Group M_IBM Q2'19     Published Date: Apr 02, 2019
There can be no doubt that the architecture for analytics has evolved over its 25-30 year history. Many recent innovations have had significant impacts on this architecture since the simple concept of a single repository of data called a data warehouse. First, the data warehouse appliance (DWA), along with the advent of the NoSQL revolution, selfservice analytics, and other trends, has had a dramatic impact on the traditional architecture. Second, the emergence of data science, realtime operational analytics, and self-service demands has certainly had a substantial effect on the analytical architecture.
Tags : 
     Group M_IBM Q2'19
By: AWS     Published Date: Jun 11, 2019
Many business leaders know that Artificial Intelligence (AI) and Machine Learning (ML) are critical to their future but don’t know where to start. Those who do have an AI/ML strategy struggle to find qualified data scientists; and once they find them, even advanced data scientists need a lot of time—even months—to build and deploy ML models. These challenges put significant limits on the range and number of problems a business can solve. In this webinar, learn how H2O Driverless AI on Amazon Web Services (AWS) automates the best practices of leading data scientists to create advanced machine learning models automatically. With these production-ready models, relative newcomers to AI/ML can generate reliable results and scale-up AI programs that anticipate and capitalize on trends, optimize supply chains, understand customer demand, match consumers with goods and services, and much more. Download our webinar to learn Implement ML successfully with minimal data science expertise. Build
Tags : 
     AWS
By: AWS     Published Date: Jun 11, 2019
Trupanion, a Seattle-based medical insurance provider for cats and dogs, needed to find data insights quickly. With only 1% of pet owners insured, the process of evaluating a claim to approve or deny payment was manual and time-consuming. Building accurate predictive models for decision-making required manpower, time, and technology that the small company simply did not have. DataRobot Cloud, built on AWS, helped Trupanion create an automated method for building data models using machine learning that reduced the time required to process claims from minutes to seconds. Join our webinar to hear how Trupanion transformed itself into an AI-driven organization, with robust data analysis and data science project prototyping that empowered the company to make better decisions and optimize business processes in less time and at a reduced cost. Join our webinar to learn: Why you don’t need to be an expert in data science to create accurate predictive models. How you can build and deploy pr
Tags : 
     AWS
By: Zaloni     Published Date: Apr 23, 2019
Although data and analytics are highlighted throughout the popular press as well as in trade publications, too many managers think the value of this data processing is limited to a few numerically intensive fields such as science and finance. In fact, big data and the insights that emerge from analyzing it will transform every industry, from “precision farming” to manufacturing and construction. Governments must also be alert to the value of data and analytics as the enabler for smart cities. Institutions that master available data will leap ahead of their less statistically adept competitors through many advantages: finding hidden opportunities for efficiency, using data to become more responsive to clients, and developing entirely new and unanticipated product lines. The average time spent by most companies on the S&P 500 Index has decreased from an average of 60 to 70 years to only 22 years. There are winners and losers in the changes that come with the evolution of both technology
Tags : 
     Zaloni
By: Uberflip     Published Date: Dec 20, 2018
In today’s world, marketers know that producing content isn’t enough. If they’re going to continue to make an investment in creating content, they need to do more to ensure it performs. We’ve long since known that combining content with a remarkable experience will allow it to reach its full potential, and allow marketers to see results. But as with any emerging category, content experience was not without its detractors. After all, what kind of results could you expect from an investment in the experience around that content? If you’ve ever wondered why you should care about content experience, and wanted something a little more concrete than a few anecdotes from marketers, or third-party stats, then look no further.
Tags : 
     Uberflip
By: AWS     Published Date: Dec 15, 2017
Healthcare and Life Sciences organizations are using data to generate knowledge that helps them provide better patient care, enhances biopharma research and development, and streamlines operations across the product innovation and care delivery continuum. Next-Gen business intelligence (BI) solutions can help organizations reduce time-to-insight by aggregating and analyzing structured and unstructured data sets in real or near-real time. AWS and AWS Partner Network (APN) Partners offer technology solutions to help you gain data-driven insights to improve care, fuel innovation, and enhance business performance. In this webinar, you’ll hear from APN Partners Deloitte and hc1.com about their solutions, built on AWS, that enable Next-Gen BI in Healthcare and Life Sciences. Join this webinar to learn: How Healthcare and Life Sciences organizations are using cloud-based analytics to fuel innovation in patient care and biopharmaceutical product development. How AWS supports BI solutions f
Tags : 
     AWS
By: Adobe     Published Date: Nov 09, 2017
Marketing leaders are asking their analytics teams to provide better insights into customers, prospects and journeys, and a more accurate assessment of the impact of marketing tactics. Use this research to find a digital marketing analytics tool to support your needs. This Magic Quadrant is intended for chief marketing of?cers (CMOs), marketing analytics and data science practitioners, and other digital marketing leaders involved in the selection of systems to support marketing analytics requirements.
Tags : 
     Adobe
By: Dome9     Published Date: Apr 25, 2018
Last year at this time, we forecast a bumpy ride for infosec through 2017, as ransomware continued to wreak havoc and new threats emerged to target a burgeoning Internet of Things (IoT) landscape. ‘New IT’ concepts – from DevOps to various manifestations of the impact of cloud – seemed poised to both revolutionize and disrupt not only the implementation of security technology, but also the expertise required of security professionals as well. Our expectations for the coming year seem comparatively much more harmonious, as disruptive trends of prior years consolidate their gains. At center stage is the visibility wrought by advances in data science, which has given new life to threat detection and prevention – to the extent that we expect analytics to become a pervasive aspect of offerings throughout the security market in 2018. This visibility has unleashed the potential for automation to become more widely adopted, and not a moment too soon, given the scale and complexity of the thre
Tags : 
     Dome9
By: Oracle     Published Date: Dec 21, 2018
Join Oracle’s CX and Marketing Strategy Director, Wendy Hogan, and Senior Vice President Oracle Marketing, Shashi Seth, as they tell how AI, machine learning and data science can engage customers, automate tasks and build ROI. Reaching the right customers on the right channel at the right time, brings rewards for CMOs who embrace these innovations, including engaged customers and increased ROI. Be inspired by the new-generation AI, machine learning and data science and take your marketing to the next level.
Tags : 
     Oracle
Start   Previous   1 2 3 4 5    Next    End
Search White Papers      

Add White Papers

Get your white papers featured in the insideBIGDATA White Paper Library contact: Kevin@insideHPC.com