data ingestion

Results 1 - 12 of 12Sort Results By: Published Date | Title | Company Name
By: Adobe     Published Date: Nov 07, 2013
Today’s leading DMPs are ingesting a wide range of owned and licensed data streams for insights and segmentation and are pushing data into a growing number of external targeting platforms, helping marketers deliver more relevant and consistent marketing communications.
Tags : adobe, the forrester wave, forrester dmp wave, audience management, data management platforms, multi-touchpoint targeting, multi-touchpoint execution, dmp vendor offerings
     Adobe
By: Attunity     Published Date: Jan 14, 2019
This whitepaper explores how to automate your data lake pipeline to address common challenges including how to prevent data lakes from devolving into useless data swamps and how to deliver analytics-ready data via automation. Read Increase Data Lake ROI with Streaming Data Pipelines to learn about: • Common data lake origins and challenges including integrating diverse data from multiple data source platforms, including lakes on premises and in the cloud. • Delivering real-time integration, with change data capture (CDC) technology that integrates live transactions with the data lake. • Rethinking the data lake with multi-stage methodology, continuous data ingestion and merging processes that assemble a historical data store. • Leveraging a scalable and autonomous streaming data pipeline to deliver analytics-ready data sets for better business insights. Read this Attunity whitepaper now to get ahead on your data lake strategy in 2019.
Tags : data lake, data pipeline, change data capture, data swamp, hybrid data integration, data ingestion, streaming data, real-time data
     Attunity
By: StreamSets     Published Date: Sep 24, 2018
Treat data movement as a continuous, ever-changing operation and actively manage its performance. Before big data and fast data, the challenge of data movement was simple: move fields from fairly static databases to an appropriate home in a data warehouse, or move data between databases and apps in a standardized fashion. The process resembled a factory assembly line.
Tags : practices, modern, data, performance
     StreamSets
By: Pentaho     Published Date: Mar 08, 2016
If you’re evaluating big data integration platforms, you know that with the increasing number of tools and technologies out there, it can be difficult to separate meaningful information from the hype, and identify the right technology to solve your unique big data problem. This analyst research provides a concise overview of big data integration technologies, and reviews key things to consider when creating an integrated big data environment that blends new technologies with existing BI systems to meet your business goals. Read the Buyer’s Guide to Big Data Integration by CITO Research to learn: • What tools are most useful for working with Big Data, Hadoop, and existing transactional databases • How to create an effective “data supply chain” • How to succeed with complex data on-boarding using automation for more reliable data ingestion • The best ways to connect, transport, and transform data for data exploration, analytics and compliance
Tags : data, buyer guide, integration, technology, platform, research
     Pentaho
By: AWS     Published Date: Aug 20, 2018
A modern data warehouse is designed to support rapid data growth and interactive analytics over a variety of relational, non-relational, and streaming data types leveraging a single, easy-to-use interface. It provides a common architectural platform for leveraging new big data technologies to existing data warehouse methods, thereby enabling organizations to derive deeper business insights. Key elements of a modern data warehouse: • Data ingestion: take advantage of relational, non-relational, and streaming data sources • Federated querying: ability to run a query across heterogeneous sources of data • Data consumption: support numerous types of analysis - ad-hoc exploration, predefined reporting/dashboards, predictive and advanced analytics
Tags : 
     AWS
By: BMC ASEAN     Published Date: Dec 18, 2018
Big data projects often entail moving data between multiple cloud and legacy on-premise environments. A typical scenario involves moving data from a cloud-based source to a cloud-based normalization application, to an on-premise system for consolidation with other data, and then through various cloud and on-premise applications that analyze the data. Processing and analysis turn the disparate data into business insights delivered though dashboards, reports, and data warehouses - often using cloud-based apps. The workflows that take data from ingestion to delivery are highly complex and have numerous dependencies along the way. Speed, reliability, and scalability are crucial. So, although data scientists and engineers may do things manually during proof of concept, manual processes don't scale.
Tags : 
     BMC ASEAN
By: AWS     Published Date: Jun 20, 2018
Data and analytics have become an indispensable part of gaining and keeping a competitive edge. But many legacy data warehouses introduce a new challenge for organizations trying to manage large data sets: only a fraction of their data is ever made available for analysis. We call this the “dark data” problem: companies know there is value in the data they collected, but their existing data warehouse is too complex, too slow, and just too expensive to use. A modern data warehouse is designed to support rapid data growth and interactive analytics over a variety of relational, non-relational, and streaming data types leveraging a single, easy-to-use interface. It provides a common architectural platform for leveraging new big data technologies to existing data warehouse methods, thereby enabling organizations to derive deeper business insights. Key elements of a modern data warehouse: • Data ingestion: take advantage of relational, non-relational, and streaming data sources • Federated q
Tags : 
     AWS
By: Talend     Published Date: Nov 02, 2018
Siloed data sources, duplicate entries, data breach risk—how can you scale data quality for ingestion and transformation at big data volumes? Data and analytics capabilities are firmly at the top of CEOs’ investment priorities. Whether you need to make the case for data quality to your c-level or you are responsible for implementing it, the Definitive Guide to Data Quality can help. Download the Definitive Guide to learn how to: Stop bad data before it enters your system Create systems and workflow to manage clean data ingestion and transformation at scale Make the case for the right data quality tools for business insight
Tags : 
     Talend
By: SAS     Published Date: Mar 06, 2018
When designed well, a data lake is an effective data-driven design pattern for capturing a wide range of data types, both old and new, at large scale. By definition, a data lake is optimized for the quick ingestion of raw, detailed source data plus on-the-fly processing of such data for exploration, analytics, and operations. Even so, traditional, latent data practices are possible, too. Organizations are adopting the data lake design pattern (whether on Hadoop or a relational database) because lakes provision the kind of raw data that users need for data exploration and discovery-oriented forms of advanced analytics. A data lake can also be a consolidation point for both new and traditional data, thereby enabling analytics correlations across all data. With the right end-user tools, a data lake can enable the self-service data practices that both technical and business users need. These practices wring business value from big data, other new data sources, and burgeoning enterprise da
Tags : 
     SAS
By: SAS     Published Date: Aug 28, 2018
When designed well, a data lake is an effective data-driven design pattern for capturing a wide range of data types, both old and new, at large scale. By definition, a data lake is optimized for the quick ingestion of raw, detailed source data plus on-the-fly processing of such data for exploration, analytics and operations. Even so, traditional, latent data practices are possible, too. Organizations are adopting the data lake design pattern (whether on Hadoop or a relational database) because lakes provision the kind of raw data that users need for data exploration and discovery-oriented forms of advanced analytics. A data lake can also be a consolidation point for both new and traditional data, thereby enabling analytics correlations across all data. To help users prepare, this TDWI Best Practices Report defines data lake types, then discusses their emerging best practices, enabling technologies and real-world applications. The report’s survey quantifies user trends and readiness f
Tags : 
     SAS
By: SAS     Published Date: Oct 18, 2017
When designed well, a data lake is an effective data-driven design pattern for capturing a wide range of data types, both old and new, at large scale. By definition, a data lake is optimized for the quick ingestion of raw, detailed source data plus on-the-fly processing of such data for exploration, analytics and operations. Even so, traditional, latent data practices are possible, too. Organizations are adopting the data lake design pattern (whether on Hadoop or a relational database) because lakes provision the kind of raw data that users need for data exploration and discovery-oriented forms of advanced analytics. A data lake can also be a consolidation point for both new and traditional data, thereby enabling analytics correlations across all data. To help users prepare, this TDWI Best Practices Report defines data lake types, then discusses their emerging best practices, enabling technologies and real-world applications. The report’s survey quantifies user trends and readiness f
Tags : 
     SAS
By: Attunity     Published Date: Nov 15, 2018
IT departments today face serious data integration hurdles when adopting and managing a Hadoop-based data lake. Many lack the ETL and Hadoop coding skills required to replicate data across these large environments. In this whitepaper, learn how you can provide automated Data Lake pipelines that accelerate and streamline your data lake ingestion efforts, enabling IT to deliver more data, ready for agile analytics, to the business.
Tags : 
     Attunity
Search White Papers      

Add White Papers

Get your white papers featured in the insideBIGDATA White Paper Library contact: Kevin@insideHPC.com